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THERMOCAPILLARY FLOW NEAR A COLD WALL

D. Canright
Mathematics Dept.. Code MA/Ca

Naval Postgraduate School
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ABSTRACT

The following model problem examines the thermocapillary feedback mechanism im-
portant at the edge of weld pools and other materi. !, processes. A pool of liquid with a flat
horizontal free surface is bounded on one side b. a vertical solid wall. which is maintained
at a cold temperature to unit depth. and at, a warmer temperature below; far away the
fluid is at the warmer temperature. Surface tension is a decreasing function of tempera-
ture, so that the surface thermal gradient drives flow toward the corner. When convection
is vigorous, the flow compresses the thermal gradient which is driving the flow: this posi-
tive feedback results in small local length scales and high velocities near the cornr. This
problem is examined through a detailed scaling analysis and through numerical !-Jaulation
for a range of parameters.
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THERMOCAPILLARY FLOW NEAR A COLD WALL

1. INTRODUCTION
In the processing of materials, often material is melted and resolidified. Several practi-

cal processes. e.g.. welding, float-zone purification. and Czochralski crystal growth. involve
a pool of molten metal with a free surface, with strong temperature gradients along the
surface. Convection in the molten metal is typically vigorous and significant to the results
of the process, in that it affects the size and shape of the pool. the heat transfer. the
mixing of solutes. and ultimately the microstructure of the finished p)roduct. The forces
driving the convection include the variation of surface tension with temI)eraturc along
the surface (thermocapillary forces). buoyancy forces due to thermal (and/or solutal) ex-
pansion, and electromagnetic forces in the case of arc welding or electron beam welding.
However, in many cases (e.g. laser welding) thermocapillary forces predominate, and even
in cases where other forces are stronger overall, there are still important regions where the
thermocapillary forces are dominant (i.e.. cold corner regions: see Chen. 1987).

Consequently. there have been nmany theoretical studies of therinocalpillarv flows, pri-
marily numerical, and a few analytical (reviews are given by Ostrach. 1982. and Davis.
1987). Cowley and Davis (1983) analyzed the (two-dimensional) thermocapillary flow near
a hot wall for vigorous flow (large Marangoni number): here the fluid flows up the wall
then turns and flows away along the free surface, so this would be called the hot corner
problem. The numerical studies of Zebib et. al. (1985) of flow in a rectangular pool (2-D)
with one hot and one cold wall. however. show that for moderate to small Prandtl numbers
(e.g., metals) the cold corner region has by far the strongest effect on both the flow and the
heat transfer. This result gives a different overall scaling than that of Cowley and Davis.
although their local hot-corner scaling was validated. Other numerical studies (e.g.. Zehr
et. al.. 1987). when a sufficiently fine mnesh is used, show similar strong flow at the cold
corner, where the flow along the free surface toward the cold wall compresses the thermal
gradient. thereby enhancing the flow anmd the heat transfer. Great caare is necessary to
insure that the small length scales of this corner region are resolved numerically: this is
not always the case (as noted by Chen. 1987).

Therefore, it is imperative to develop a theoretical understanding of the dynamics
of the cold corner region. Being a region of intense heat, transfer, the details of the flow
can affect the shape of the melt pool and the cooling rate, thus the microstructure. of
the material. At the least. the dependence of the length. velocity and thermal scales
on the parameters (Marangoni number. Prandtl number, Capillary number) needs to be
understood in order for realistic numerical models to be designed in a way to resolve the
details in this important region. But as yet, such understanding is lacking. In fact. in a
recent review, M. M. Chen (1987. p.552) states, "It would seem then that the structure of
the cold corner flow is one of the most critical issues to be studied in the future."

To analyze the behavior of the cold corner region without all the complications of the
complex geometry, phase change. and time dependence inherent, in real materials process-
ing applications, a simplified model problem will he considered. much like that of Cowley
and Davis (1983). as follows. A pool of liquid has a horizontal free surface ending at a
vertical wall, and the upper section of the wall is cooled; the resulting thermal gradient
drives thermocapillary flow towards the cold corner. The depth and width of the pool are
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assumed large compared to all local length scales (which is reasonable for practical situa-
tions with high Marangoni numbers). so the pool appears semi-infinite both horizontally
and vertically.

This simplified problem is still complicated, and contains most of the features of the
(cold corner regions in practical processes. e.g.. welds. The missing features ar, plJase
change and surface deflection, both of which could modify the geometry locally (curved
wall and surface). but are unlikely to change the basic structure and scaling.

The structure of the thermal and flow fields will be examined both through a detailed
scaling analysis to determine the dependence on the parameters. and through numerical
simulation using two different methods.

2. PROBLEM STATMENT
A pool of incompressible Newtonian fluid is bounded on the left by a vertical solid

wall. with the upper portion of the wall (to dlepth d) maintained at a cold temperature T,.
while the rest of the wall is at the hot ambient temperature TI, of undisturbed fluid far froom
the corner. (See figure 1.) Above the horizontal free surface of the liquid is an inviscid.
nonconducting gas. Surface tension is assumed strong enough to keep the fr'ee surface fliat
(small Capillary number). but with smrface tension variations due to a linear dependence
on temperature. The resulting flow is assumed to be two-dimensional and steady.

Then the equations governing the thermocaplillary convection in the cold corner arc
conservation of mass. momnentum, anld ener'gy:

V u=0 (2.1)

pu. Vu,= -U p+ 1 72 u (2.2)

pcp u . VT k V 2 T (2.3)

with the boundary conlditions:

at y = 0 T= 0. v = 0. paui= yTv (2.4a.b.c)

at x = 0 T= . >d y= 0= (2.5a.b.c)

as x.1 y T T• ITI. V. --+ 0 (2.6a.b.x)

Here u is the velocity vector with components u and v in the . (horizontally rightward)
and y (vertically downward) directions. p is pressure. T is temperature. p is density. p is
viscosity. cp is specific heat. k is thermal conductivity, and -y (assumed (onstant and neg-
ative) is the derivative of the surface tension with respect to temlperature. The boundary
conditions specify that the wall is piecewise isothermal with no fluid slip. and the flat free
surface is thermally insulated, with therniocapillary forcing.

The equations can be nondimensionalized by scaling lengths by d. temperature dif-
ferences by AT E Th - T,. and velocities by i., - -y AT/IL. The resulting dimnensionless
equations are:

V' • U = 0 (2.7)

Ru -Vu = _Vp + V 2 u (2.8)

Mu. TVT = V 2 T (2.9)
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with the boundary conditions:

at y = 0 :TY = 0. v = 0. u- =T (2.10a.b.c)

at x=O• T={ 7 y l . = 1' =0 (2.11a.b.c)

as x. y -* x T -- 0. u. v -- 0 (2.12a.b.c)

where u, etc. from here on denote the dimensionless quantities. The two dimensionless
parameters are the Marangoni number M = u~d/R. and the Reynolds numl)er R =- u,d/v.
where h = k/pc, is the thermal diffusivity and v = ilt/p is the kinematic viscosity. Their
ratio gives the Prandtl nnllwr: P =- v/i; = MIR.

For the numerical solutions below, it. is convenient to eliminate the pressure by adopt-
ing a streain-function/vorticity formulation for the flow:

Ru. V U = V2 W, (2.13)

W = -V2 41 (2.14)

-U I .J v = -qI'" (2.15a.b)

where T is the stream function and w is the vorticity. with the flow boundary conditions

at y = 0 : = ,= 0. w=-T (2.1Ga.b.(')

at x = 0 :%P = TI,. = Ty = 0 (2.17a.b1)

as x,y --* cc: T. W -0 (2.18a.b)

3. SCALING ANALYSIS AND REGIMES OF BEHAVIOR
The structure of the thermal and flow fields can take on different forms. depending on

the values of the two governing l)arameters. the Marangoni number Al. which measures the
importance of thermal convection relative to thermal diffusion, and the Prandtl number
P. which is the ratio of viscous to thermal diffusion. a material property. (Equivalently.
one could use Reynolds number R = A1/P as the second plarameter. the ratio of inertial to
viscous forces.) Here we derive the ap)propriate dimensionless scales for the four different
asymptotic regimes of behavior.

To examine the dominant, balances in the cold corner, three scales suffice: the hori-
zontal length scale I for the thermal gradient along the surface, the vertical viscous length
scale 6 for the velocity shear at the surface (which turns out to be the same scale as for
the velocity shear on the wall), and the velocity scale U for flow along the surface. The
vertical thermal length scale is determined by the boundary condition on the wall, and so
is 0(1). The thermocapillary stress condition (2.10c) scales as:

U (3.1)

so that U -,6/l. In the energy and vorticity equations (2.9 and 2.13). the terms for
convection in each direction scale the same, but not so for diffusion. and by (2.16). the
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surface vorticity scale is 1/1. so (2.9) and (2.13) scale as:

U 1
AT F2- + 1 (3.2)

U 1 1(3.3)12l- l-3+ l--5

For small enough AT, thermal convection is negligible. implying 1 1. an(l the thermal
field is essentially conductive, decoupled from the flow. But for large enough AT convection
becomes important. and the strong surface flow toward the wall comIpresses the thermal
gradient along the surface, which in turn strengthens the local driving force for the flow.
This reduces the horizontal thermal length scale I to the point that thermal diffusion away
from the wall balances convection toward the wall. so the local cf(.1f'IiVC Marangoiii number
is order unity: M•f =_ MUI - 1. Then the externally imposed length scale (dimensional
d above) is no longer directly relevant to the compressed cold corner region. (In this caSC.
the local importance of inertia is better indicated by whether viscous or tlermial difilisiol
is more efficient. i.e.. by P rather than R.)

Similarly. for small enough R. inertia is negligible everywhere. implying 5 -- 1. and t he
flow is dominated by viscous forces. For large enough R inertial forces become dominant
and viscous effects are confined to boundary layers of thickness 6 << I along the surface and
the wall, where the local effective Reynolds number R,,f = RU6 2 /I _ 1. (Both layers are
of comparable thickness because the pressure field outside the layers has the same length
scale in both directions.) The above gives the scaling for each regime.

When the thermal field is conductive and the flow field dominated by viscous forces
(Al K< I and R << 1. or P > AT), all three scales are of order unity: I - 1. 6, - 1. U - 1.
Thus in this case (only). the scaling used in the nondiinensionalization is apiropriat.e
everywhere. Within this regime, the solution is fully two-dimensional wit h no fine st ructure'
and is nearly independent of the parameters.

For the conductive case with inertial flow. the additional resistance of inertia reduces
both the velocity scale and the viscous length scale: U - 6 - R- - (while I - 1 still).
This reduced velocity also reduces the effective Marangoni number. such that this regime
applies when M << R3, or M << P 2, with R >> 1. or P << Al. (Note that this gives
the same boundary layer scaling as Zebib et al.. 1985. except they made an error on the
passive wall layers. as pointed out by Chen. 1987.) Here the vorticity generated by the
shear stresses on the surface and the wall are confined to the thin boundary layers.

When thermal convection is important but inertia is not (AI > 1 and P >> 1). surface
tbermal varitions are compressed to a narrow region. beyond which the thermocapillary
forcing is small, so b -1 - M-1 and U - 1. However, the strong inward flow along
the surface turns downward and away from the no-slip wall (and weakens rapidly with
distance). such that no thermal boundary layer is formed on the wall: rather, vertical and
horizontal variations are comparable.

The most important regime for materials processing is where thermal convection is
important and P << 1. the latter being generally true for metals. In this case. within the
compressed thermal region there are thin viscous boundary layers along the surface and
wall. Then I - M-P-½, 6 M- 1 , and U , P½L. i.e., the additional resistance of inertia
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decreases the velocity scale and thus increases the thernial scale by a factor of \IT relative
to the purely viscous case. Again the reduced velocity changes the thernial convection
scaling, and large Marangoni number here means M >> P-:!.

The approximate divisions between the four asymptotic regines are shown in figure
2. For a material of small P. as M is increased from zero, at first the temperature field is
conductive and the flow dominated by viscous forces, then the flow becomes primarily iner-
tial and viscous boundary layers form. and finally thermal convection becomes dominant.
shrinking all local length scales in the corner.

4. VISCOUS CORNER REGION
There is a region in the corner, for any Al and P. where viscous stresses from the wall

limit the flow and both inertia and thermal convection are negligible, so the teli)mrat nr,
is a linear function along the surface. Locally the thermocapillary stress is constant. and
the flow is given by a similarity solution (Moffatt. 1964. although the published version is
incorrect).

If the flat free surface makes an angle o with the solid wall. then a constant unit
surface shear stress toward the corner gives

r [(sin 2a - 2o )(cos 20 - 1) - (cos2oa - 1)(sin 20 - 20)]I (r, ) = -- (4.1)
4 sin 2a - 2o cos 2a(

where r and 0 are polar coordinates. with 0 increasing froni the wall to the free surface
(see figure 1). In the special case here. a = !. and

q(r, ,) = r2  !0 - cos 20) (sin 20 - 20) (4.2a)

14 [7i 1
u = r [ sin 20 + -(cos 20 - 1)

(I-cos 20) + -1(sin 29 - 20](4.21))

W = I - 40 (4.2c)
7-1

4
p - P0 = - In r (4.2d)7r

where ÷ and 9 are unit vectors in the coordinate directions, and P0 is some reference
pressure. Figure 3 shows the streamlines for this similarity flow. The zero-vorticity contour
extends from the corner at a 450 angle. dividing the negative vorticity on the surface from
the positive vorticity on the wall.

This is the form of the flow in the cold corner on the smallest length scale. where
all the above flow quantities would be multiplied by T_-(.0) (which scales as 1/1). The
velocity grows linearly with distance r from the corner and the local length scale is r. which
can be used to estimate the range over which the similarity solution is applicable. For the
two viscous-flow regimes mentioned above, the linear-temperature approxinlation requires
r <K 1, so for the conductive regime r < 1 while for the convective regime r K< M- 1.
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For the two inertial-flow regimes, the more restrictive condition is that locally inertia is
negligible, and the local velocity scale is r/l. so we must have r 2 < l/IR: ill the conductive

regime this implies r K< R- . while in the convective regime the range is r7 < P A1-1 . or

r/ << P-.
This gives an estimate of the resolution required for a numerical model to resolve all

the details of the cold corner flow. Because of the corner singularity in w and p. spectral
methods would be inappropriate: instead, finite-difference or finitc-elehnnt methods could

be used. Then if the first grid point is in the similarity range. no details of the velocity field
in the corner will be lost. In addition, the similarity form may be useful as a "'matching'
type boundary condition for the singularity at the origin.

5. GREEN'S FUNCTION METHOD FOR VISCOUS CASE: I? - 0
When the Reynolds number is sufficiently small. inertia is negligible throughout the

flow field, and to lowest approximation the flow is governed by the biharnionic equation:

V 2 (V 2 'I)=0 (3.1)

Then the flow everywhere, depends only on the instantaneous thermal gradient along the
surface (even if the flow is unsteady). This allows the flow field to be represented using
the Green's function for a point force near a rigid wall. directed toward the wall (see. e.g..
Hasimoto k Sano. 1980. or Blake. 1971).

The Green's function for the stream function due to a unit (dimensionless) force in
the negative x direction applied on the surface at the point (•. 0) is:

r r+) 2xy] (5.2a)

where

r = +(x +) 2 + y ._ = _ + y2  (.2b)

The flow field due to such a point force at ( = 1 is shown in figure 4. (Note that
all distances scale with (.) The far field (r >> ý) can be used as an applroximation to thc
viscous thermocapillary flow at, large enough distances that the distributed forcing of tlh
thermal gradient can be replaced by a point force near the wall. It, call be shown that in
the far-field the zero vorticity contour approach(es all angle of ] from the surface. As r
increases, the velocity decays rapidly as u - O(r- 2 ).

This rapid decay of velocity has the consequence that no thermal boundary layer
forms on the wall. While this result only applies directly when inertia is negligible, one
would expect that the same order of decay applies to the inertial case in the far field, by
analogy with the Squire-Landau jet (Landau, 1944. and Squire, 1951) where the velocity
due to an isolated point force decays like u O- (r-1) for all Reynolds numbers. Note also
that near the wall (except near the surface). the flow is away from the wall. Hence. though
the surface temperature gradient may be highly compressed from vigorous convection.
there is no thermal boundary layer along the wall. i.e., vertical and horizontal temperature
variations are expected to be of the same order. This is in marked contrast with the
seemingly comparable case of a hot corner. There the flow tends to expand the surface
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thermial gradienlt over long dlistance. SC) tile forcing is similar to a (listrihlutedl line lor1ce.
and] thermal boundary layers form both oin the wall an(i the surface ( Cowley aild Da-vis.l
1983). This difference between concent ratedi forcing andi (list rilbutedl forcing- chang-es thli

fundamental character of the flow.
Using the Greeii s funct ionl. t hen thle st ream funct oio. velocity coinponecit '. mnd voi-

ticity in thle viscous tllerinocalpillary flow are givell by:

'I(.Y) = J T(o) y InI ( ) -r <53

u~~~x~~y)~ 2 L~T()[n(i 2 ( )- 2 ;( ) dc (5.3bjý

'i'(1 u) + x '~ (~~-_ - 2~ -c 2x(x+ I')] 5

W~x. Y)= T'(ý) [2!/ 4~ ~j~)i

usiiig the shiortenled inotat ion 7"( x ) T, (.,7. 0).
To calculate the steady flow for various values of Marangoni number (with 1? 0). thc

tine-dependent eqluation for the temperature field was explicitly inltegratedl in timle unitil
the steadly state was reachedi. A finite square dlomlain onl a uniuformu grid was used. where oil
the artificial boundlaries. (liflutsion across the b~oundlaries is neglect ed andl where convect iOl
is iniwardl tile fluid outsidle is assumed to lbe at, zero templerature. Thle, effects ofthef
artificial boundaries onl the cold cornercl aIre presumab~ly smiall if thle 1)01!id(aiiQaes 5(tVc1 seil
unit~s away, since the thermal field decays quickly with distance. Central finite diffCreIVce'0

weeusedl. with up~windl (iftel'enciuug for the convective termus. The velocity at. each on
was evaluated from the above integrals (5.3b.c). using an analytic- aIpproximniatlllu arlolund
the singularity at (x. 0). and( elsewhere using the trap~ezoidal inie with first-orier Cliff ereulICCe
for the thermal gradient. as central Cliff erences here resulted in at numerical inst ability.

The result~s for a range of Al are showni in figure 5. Tile transition fromn the( primar-ily
condluctive regine to the convective regime as Al increases is appIarent. As the surface
gradient b~ecomes more compact. the strong diownward convection away from the corner
extends the thermal region into a sort of b~roadI diagonal plume: no thernial boundary layer
forms even for large Al. (Whlere the isotherms intersect the artificial boundaries, slighlt

local distortion dume to the artificial boundary condlitionls is applarent. ) For large ill.th
flow outsidle tile coldl corner is qualitatively similar to time flow from a point smiurce (sec
figure 4).

6. NUMERICAL SOLUTIONS FOR. FULL SYSTEM
When inertia is not negligible. thme full coupliedl nonlinecar equations nmust be solvedl.

Unlike the Green~s function approach. tilis requires flow boundary conditions at. the. arti-
ficial boundaries of time computational domain: here these boundaries are assumed to be
imp~ermeab~le and shear-free. as well as iso~thermnal. These conditions, constrain both1 thme
thermal and flow fields (compared to the Green's function method). enhancing recircula-
tioni aiid prevenmting long thermal IpluimeS. Still. with tile artificial boundlaries several units
away. their effects onl the ,o~ldl corner are expectedl to be small.
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Again, the numerical inethod involves stepping the unsteady equations forward in timli(
until steady state is reached. At each time step. the convection-diffusion equations for tem-
perature (2.9) and vorticity (2.13) are solved by the Alternating-Direct ion Imiplicit (ADI
scheme. where the convective terins are evaluated l)y the Eulerian-Lagrangian MethodI
(ELM. see Chcng et al.. 1984) using the velocity field from the old stream function ald
up)wind bilinear interpolation. (The ADI method avoids diffusive imilincrical instal)ilitv. s()
the time stcI) is only linmited 1by convective stal)ility.) After several timie steps. t li Poisson
equation for the stream function (2.14) is solved by Gauss-Seidel iteration with Succes-
sive Over-Relaxation (SOR). Steady state is assumed when the pointwise RMS change in
stream function is below a certain tolerance.

A non-uniform Cartesian grid was eml)loyed. (The prograin allows arbitrary spacimL
of points in each direction.) Using a three-point difference scheme, only first-order accuracY
is possible for the second derivatives: the differencing eml)hoyed becomes secoli-ord(er in
the limit of uniform spacing. Specifically. the following one-dimensional (lift'erelic' formula('
were used (derived from Taylor series):

I (1.d1+ - d(.x dy.f,_ -:+ f- + f + _ f+

(dK._(dxr++ d:r_-.) d:r+d + dx.+(dx.+ + dxr_)

+ O(f .dx+dx._) (G. l
2 -2 2

f 2 f_ + 2 f + 2f+
dx_(dx+ + dx_) d + �dx.d. dx+(dx+ + dx_)

+ O(f..(dx+ - dx,)) (6. 11

where dx- and d(.+ are the distances to the grid points below and abomve thle c'urrint p)oint.
with f- and f+ the corresponding values of the function.

The grid spacing in each direction was chosen to have a closely packe(d region of
uniform spacing by the surface or wall. a widely spaced region of uniform spacing out neal
the artificial boundaries, and in between a region of smoothly (exponentially) changing
spacing. This was generated by ap)plying the followilng function to a uniforrm grid (in c.
say): {lnr7/D. 0( < 6<

(r,,2 -rln~r(1-s)/&1)/Di. .. i 2 (_] (6.21
X?0 (IXý (.2

where r is a parameter giving the ratio of outer to inner spacing. ýl and ý2 are paralicter.-
delineating the three regions. D = (r - 1)(ý2 - 6 ) + Ill r(r + 71 -Q r- 2 )- and x,,,,, 1 is the
position of the artificial boundary.

It was found that, even when the time step easily satisfied convective stability require-
ments. nonetheless instabilities developed in the vorticity near the wall. Several different
formulations for the wall boundary condition on vorticity were tried, to no avail. However.
by under-relaxing the changes in wall vorticity only during the initial adjustmnent period.
the instability was eliminated. The formula used to calculate the vorticity at the wall
(without under-relaxation) fromn the stream function is

x20 - 28
S= +O~/": (.3



where subscripts 0, 1, and 2 refer to the wall and the first two grid l)oints. While only
first-order, this formulation is independent of i9o and thus avoids re-using the boundary
condition for %P.

Results are shown in figures 6 and 7 for P = 1 and P = 0.01. for a variety of Al. The
conductive, viscous regime is represented by the case M = 0.01. P = 1 (figure 6a). For
P = 1. with increasing M. the surface thermal gradient becomes compressed (similar to
the P = :c case computed by Greenis functions) along with the vorticity on the surface.
However. inertia is no longer negligible, and so the flow down the wall has less of an
outward component. Also. the artificial boundaries modify the "plume.- keeping it from
the boundaries and turning it. upward due to the recirculation. For P = 0.01 (as typical in
liquid metals). with increasing M inertial effects confine the vorticity. forming clear viscous
boundary layers, before thermal convection becomes strong. Also. a counter-rotating cell
forms in the lower part of the domain. As thermal convection compresses the surface
gradient, the surface viscous boundary layer remains limited to the cold corner. Note that
for large AM and small P, the thermal length scale is small compared to the overall domain.
and the viscous length scale is small compared to the thermal scale. imposing sevre, (local)
resolution requirements on any numerical model.

The numerical results for P = 1 and P = 0.01 are compared with the scaling analysis
in figure 8. The thermal length scale (or rather 1/1) is estimated from the thermal gradient
T, at the wall (based on the first grid point along the surface). The velocity scale (U)
is estimated from the maximum velocity u,,,a at a, grid point on the surface (though the
actual maximum might. be expected to fall between grid points). The viscous length scale
(6) is approximated by the position . of the grid point with the maxinmm vedocity.
For P = 1, the transition is apparent from the conductive viscous regime (where 1. U.
and 6 are nearly independent of AT) to the convective viscous regime (where I x Al-' anmd
6 N M-A1, with U roughly constant). For P = 0.01, two transitions are seen. fromn the
conductive viscous regime to the conductive inertial regime (I nearly constant. U Dc AI-1/3.
and 6 oc M-1/ 3 ). to the convective inertial regime (1 N l M-1. 6 x -- 1. U nearly comnstant ).

'7. DISCUSSION AND CONCLUSIONS
The practical importance of thermocapillary convection in materials processing. along

with the complications inherent in typical processes (e.g. curved interfaces. phase change.
etc.), insure that numerical simulations will remain one of the main theoretical tools for
understanding such systems. This work predicts. a prioi,. the resolution requirements for
such numerical models to accurately represent the high heat transfer and rapid velocity
variations in the cold corner region.

The structure of the corner depends on two dimensionless parameters indicating the
driving force for convection and relative importance of viscosity: the Marangoni number
M (based on the overall temperature difference, overall thermal length scale. and material
properties) and the Prandtl numl)er P (a material property). Hence there are four asynilp-
totic regimes (shown in figure 2) depending on whether thermal convection and inertial
forces are locally important. For large-P materials (e.g., organics). the corner flow is dom-
inated by viscous forces, and for large M the surface thermal variations are compressed.
i.e.. the local length scale is decreased (and heat transfer increased). For small-P materi-
als (e.g.. metallics), inertia becomes important before thermal convection with increasing



Al. and thin viscous boundary layers form within the thermal region. When -l is large
(compared to p-1/ 2 ). three levels of length scales must be resolved (overall. thermal. and
viscous), a severe requirement on numerical models.

The scaling was derived from a simple problem designed to isolate the feedback mech-
anismn of the cold corner. Numerical calculations by two methods for closely related prol-
lems (where the corner is necessarily less isolated due to the finite domain) illustrate tle
changing structure of the cold corner and show the details of the transitions bctwcji tlih
asymptotic regimes. The numerical results are consistent with the scaling analysis.

One surprising result, in contrast with the hot corner problem of Cowley and Davi,
(1983). is that no thermal boundary layers form. This difference is due to0 the forcing l1rillg

linmited to a relatively concentrated regioii in the cold corner. while for tlih hot coruer the
forcing is distributed over all extended region (the horizontal thermal variations being
extended by convection).

To compare with the numerical results of Zebib et al. (1985) for P = 1. note the
different boundary conditions: their domain had a (flat) free surface. a hot andl a c1ld
no-slip wall. and an insulated no-slip bottom. Then even when the coldl corner was highly
compressed. there were still significant thermal variations along most of the surafc(h due to
the hot wall. so the overall scaling is similar to the conductive inertial case here. And ap-
parently even their cold corner was mnodified by the external bulk flow. for their maxiunun
vorticity scaled as w c A12/ 13 , whereas here Lw -x M. (The resolution requirements derived
here can thus be considered conservative.) Hence one important question remaining is
under what conditions can the cold corner be considered locally determined (as it is here).

In real materials processes. the surface is free to deflect. and the position and shape of
the solid-liquid interface depends on the thermal field. These effects greatly complicate the
problem geometrically. yet the dominant dynamic balance should remain that considered
here. Future work will investigate these effects in the cold corner.
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FIGURE CAPTIONS

Figure 1. Problem Formulation: a liquid quarter-space is bounded above by a flat free
surface subject to thermocapillary forcing. and is bounded on the left by a rigid vertical
wall. at temperature T, to depth d and at the warmer temperature T1, below. which is al-o
the ambient temperature of the undisturbed fluid far away.

Figure 2. Asymptotic Regimes: the four different asymptotic behaviors correspond to
whether the thermal field is controlled primarily by convection or by conduction. and
whether the flow is dominated by viscous or inertial forces.

Figure 3. Viscous Corner Flow: streamlines (solid. black) and vorticity contours (dashed.
light gray) for the self-similar solution valid where the surface temperature is approximimately
linear and inertia is negligible.

Figure 4. Green's Function: streamlines (solid. black) and vorticity contours (dashed. light
gray) for the non-inertial flow due to a point force on the surface at (1.0). directed toward
the wall. The flow is recirculating and decays rapidly with distance.

Figure 5. Numerical Results for R - 0 (P --+ x): velocity vectors and isotheriw- H -),ld.
dark gray) of numerical solutions using the Green's function forlmulation. for a rang,' of
Marangoni numbers. On the artificial boundaries (bottom and right). normal ther'nal
diffusion is neglected and inconiing fluid is assumed isothermal. (a) .A1 = 10: (b) A1I = 30:
(c) M = 100; (d) M = 300: (e) M = 1000.

Figure 6. Numerical Results for P = 1: isotherms (solid. dark gray). streamlines (thin.
black) and vorticity contours (dashed. light gray). for the numerical solution of the fulll
coupled system. The artificial boundaries (bottom and right) are assumed isothermal.
impenetrable, and shear-free. (a) M = 0.01: (b) M = 10: (c) Il = 30: (d) 'M = 100: (C)
Al = 300: (f) Al = 1000: (g) detail of M = 1000.

Figure 7. Numerical Results for P = 0.01: see previous caption. (a) Al = 1: (b) M == 10:
(c) M = 100: (d) detail of M = 100: (e) M = 1000: (f) detail of M = 1000: (g) M=
10. 000: (h) detail of M = 10. 000.

Figure 8. Summary of Numerical Scales: wall temperature gradient T, (diamonds). niaxi-
mum velocity U,,a, (triangles). and position x,,,, of maximum velocity (stars). as functions-
of Marangoni number M. from numerical solutions of full system. Lines of slope 1. -1. and
-1/3 are shown for comparison with scaling analysis. (a) P = 1; (b) P = 0.01.
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